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1. Some theory
2. Example

a. The domain
b. Let’s code!
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Misconception!
Modeling in Domain-Driven Design is a

waterfall-like big design up-front,
and therefore not agile





Insights
● No one gets the model correct the first time.
● The model changes over time.
● The model is never done.
● The model needs to be refactored 

throughout the development lifecycle.
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Refactoring to patterns

Micro-Refactorings
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Misconception!
When doing µServices, 
doing a rewrite is easy



Insights
● The domain knowledge is lost after rewriting 
● All dialogue has to happen all over again.
● It’s hard to guarantee it will work as before.
● Doing the same thing twice and expecting 

improvements is foolish.
● The domain model is an asset!
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Deposit Categories





Deposit Map
Updates after 2 weeks
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Creates the deposit map, based on the last update. 



Nullable?



Nullable? What does 
min date mean?



Nullable? What does 
min date mean?
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Nullable? What does 
min date mean?

-> Nullable input is leaking in from infrastructure

Another from date?



Why should a service assemble parts of the Map?

I need to think 
about this...



Why should a service assemble parts of the Map?

I need to think 
about this...

-> The deposit map should be build in the domain
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The boundaries are not enforced.

….and this obscures the business logic. Is there any?



Is there anything to be learned from the model?



YES! We forgot about another use case ;) 



-> Let’s add these concepts of the model to the code...



-> Let’s add these concepts of the model to the code...

Input is no longer nullable!



INFRASTRUCTURE

APPLICATION SERVICES

DOMAIN



-> Null check is moved outwards to infrastructure



-> Null check is moved outwards to infrastructure

There is a service for each use case now...



Misconception!
Don’t repeat yourself! 
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-> Let’s move the deposit map creation to the domain



Two different public factory methods



dataDrop is encapsulated in model

Naming could be improved...



Data conversion 
happens in the 
background
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Apparently, there is no business logic...



Apparently, there is no business logic...

Added a new repository 
method to eliminate 
nullability...





There is one business rule that was obscured before...



There is one business rule that was obscured before...

OK! We send a full map 
if the categories have 
been updated :)



Parameters are not 
null. Min Date has 
been eliminated.



Refactoring to
 deeper insight

Refactoring to patterns

Micro-Refactorings



1. Some theory 
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a. The domain
b. Let’s code!



Afterthoughts
● It might not be the best example
● We were merely reminded about domain 

concepts we didn’t translate to code
● It was not a breakthrough
● But the code is now aligned again with 

the domain model! Hexagon ftw!



Recommendations



Let’s learn more about tactical design. 
Contact me!

Questions?

Christoph Baudson / @sustainablepace


