
Refactoring Toward 
Deeper Insight

DDD Cologne Bonn Meetup / Jul 2, 2020

Christoph Baudson / @sustainablepace



Christoph Baudson

● Software dev at REWE Digital since 08/2015

● Organizer of the DDD Meetup Cologne

● @sustainablepace / sustainablepace.net



1. Some theory
2. Example

a. The domain
b. Let’s code!



Domain experts DevelopersDomain 
Model



Misconception!
Modeling in Domain-Driven Design is a

waterfall-like big design up-front,
and therefore not agile





Insights
● No one gets the model correct the first time.
● The model changes over time.
● The model is never done.
● The model needs to be refactored 

throughout the development lifecycle.



Micro-Refactorings



Refactoring to patterns

Micro-Refactorings



Refactoring to
 deeper insight

Refactoring to patterns

Micro-Refactorings



Domain experts DevelopersDomain 
Model



Misconception!
When doing µServices, 
doing a rewrite is easy



Insights
● The domain knowledge is lost after rewriting 
● All dialogue has to happen all over again.
● It’s hard to guarantee it will work as before.
● Doing the same thing twice and expecting 

improvements is foolish.
● The domain model is an asset!



1. Some theory 
2. Example

a. The domain
b. Let’s code!









Deposit Categories





Deposit Map
Updates after 2 weeks





1. Some theory 
2. Example

a. The domain
b. Let’s code!





INFRASTRUCTURE

APPLICATION SERVICES

DOMAIN



Refactoring to patterns

Micro-Refactorings



INFRASTRUCTURE

APPLICATION SERVICES

DOMAIN



Creates the deposit map, based on the last update. 



Nullable?



Nullable? What does 
min date mean?



Nullable? What does 
min date mean?

Another from date?



Nullable? What does 
min date mean?

-> Nullable input is leaking in from infrastructure

Another from date?



Why should a service assemble parts of the Map?

I need to think 
about this...



Why should a service assemble parts of the Map?

I need to think 
about this...

-> The deposit map should be build in the domain



INFRASTRUCTURE

APPLICATION SERVICES

DOMAIN



The boundaries are not enforced.

….and this obscures the business logic. Is there any?



Is there anything to be learned from the model?



YES! We forgot about another use case ;) 



-> Let’s add these concepts of the model to the code...



-> Let’s add these concepts of the model to the code...

Input is no longer nullable!



INFRASTRUCTURE

APPLICATION SERVICES

DOMAIN



-> Null check is moved outwards to infrastructure



-> Null check is moved outwards to infrastructure

There is a service for each use case now...



Misconception!
Don’t repeat yourself! 



INFRASTRUCTURE

APPLICATION SERVICES

DOMAIN



-> Let’s move the deposit map creation to the domain



Two different public factory methods



dataDrop is encapsulated in model

Naming could be improved...



Data conversion 
happens in the 
background



INFRASTRUCTURE

APPLICATION SERVICES

DOMAIN





Apparently, there is no business logic...



Apparently, there is no business logic...

Added a new repository 
method to eliminate 
nullability...





There is one business rule that was obscured before...



There is one business rule that was obscured before...

OK! We send a full map 
if the categories have 
been updated :)



Parameters are not 
null. Min Date has 
been eliminated.



Refactoring to
 deeper insight

Refactoring to patterns

Micro-Refactorings



1. Some theory 
2. Example

a. The domain
b. Let’s code!



Afterthoughts
● It might not be the best example
● We were merely reminded about domain 

concepts we didn’t translate to code
● It was not a breakthrough
● But the code is now aligned again with 

the domain model! Hexagon ftw!



Recommendations



Let’s learn more about tactical design. 
Contact me!

Questions?

Christoph Baudson / @sustainablepace


